Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.

Identifieur interne : 001904 ( Main/Exploration ); précédent : 001903; suivant : 001905

Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.

Auteurs : Aditya Bhalla [États-Unis] ; Namita Bansal [États-Unis] ; Ryan J. Stoklosa [États-Unis] ; Mackenzie Fountain [États-Unis] ; John Ralph [États-Unis] ; David B. Hodge [Suède] ; Eric L. Hegg [États-Unis]

Source :

RBID : pubmed:26862348

Abstract

BACKGROUND

Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment.

RESULTS

Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar.

CONCLUSIONS

This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H2O2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.


DOI: 10.1186/s13068-016-0442-0
PubMed: 26862348
PubMed Central: PMC4746924


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.</title>
<author>
<name sortKey="Bhalla, Aditya" sort="Bhalla, Aditya" uniqKey="Bhalla A" first="Aditya" last="Bhalla">Aditya Bhalla</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Namita" sort="Bansal, Namita" uniqKey="Bansal N" first="Namita" last="Bansal">Namita Bansal</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stoklosa, Ryan J" sort="Stoklosa, Ryan J" uniqKey="Stoklosa R" first="Ryan J" last="Stoklosa">Ryan J. Stoklosa</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fountain, Mackenzie" sort="Fountain, Mackenzie" uniqKey="Fountain M" first="Mackenzie" last="Fountain">Mackenzie Fountain</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<affiliation wicri:level="1">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison</wicri:regionArea>
<wicri:noRegion>Madison</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hodge, David B" sort="Hodge, David B" uniqKey="Hodge D" first="David B" last="Hodge">David B. Hodge</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA ; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA ; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hegg, Eric L" sort="Hegg, Eric L" uniqKey="Hegg E" first="Eric L" last="Hegg">Eric L. Hegg</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26862348</idno>
<idno type="pmid">26862348</idno>
<idno type="doi">10.1186/s13068-016-0442-0</idno>
<idno type="pmc">PMC4746924</idno>
<idno type="wicri:Area/Main/Corpus">001926</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001926</idno>
<idno type="wicri:Area/Main/Curation">001926</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001926</idno>
<idno type="wicri:Area/Main/Exploration">001926</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.</title>
<author>
<name sortKey="Bhalla, Aditya" sort="Bhalla, Aditya" uniqKey="Bhalla A" first="Aditya" last="Bhalla">Aditya Bhalla</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Namita" sort="Bansal, Namita" uniqKey="Bansal N" first="Namita" last="Bansal">Namita Bansal</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stoklosa, Ryan J" sort="Stoklosa, Ryan J" uniqKey="Stoklosa R" first="Ryan J" last="Stoklosa">Ryan J. Stoklosa</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fountain, Mackenzie" sort="Fountain, Mackenzie" uniqKey="Fountain M" first="Mackenzie" last="Fountain">Mackenzie Fountain</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<affiliation wicri:level="1">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison</wicri:regionArea>
<wicri:noRegion>Madison</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hodge, David B" sort="Hodge, David B" uniqKey="Hodge D" first="David B" last="Hodge">David B. Hodge</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA ; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA ; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hegg, Eric L" sort="Hegg, Eric L" uniqKey="Hegg E" first="Eric L" last="Hegg">Eric L. Hegg</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H2O2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26862348</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-016-0442-0</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H2O2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhalla</LastName>
<ForeName>Aditya</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bansal</LastName>
<ForeName>Namita</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stoklosa</LastName>
<ForeName>Ryan J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fountain</LastName>
<ForeName>Mackenzie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hodge</LastName>
<ForeName>David B</ForeName>
<Initials>DB</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA ; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hegg</LastName>
<ForeName>Eric L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alkaline hydrogen peroxide (AHP) pretreatment</Keyword>
<Keyword MajorTopicYN="N">Biomass conversion</Keyword>
<Keyword MajorTopicYN="N">Catalysis</Keyword>
<Keyword MajorTopicYN="N">Cellulosic biofuels</Keyword>
<Keyword MajorTopicYN="N">Copper</Keyword>
<Keyword MajorTopicYN="N">Hybrid poplar</Keyword>
<Keyword MajorTopicYN="N">Lignin</Keyword>
<Keyword MajorTopicYN="N">Oxidative delignification</Keyword>
<Keyword MajorTopicYN="N">Sugars</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26862348</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-016-0442-0</ArticleId>
<ArticleId IdType="pii">442</ArticleId>
<ArticleId IdType="pmc">PMC4746924</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol J. 2015 Apr;10(4):510-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25676392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jan 28;6(1):10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Apr 03;7(1):48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24693882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Apr;101(8):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20006490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Dec;150:321-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2015 Feb;112(2):252-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2003 May;87(3):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12507864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Mar 27;124(12):3026-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11902894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Sep;119:174-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 May 23;7:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24936209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1985 Mar;27(3):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18553662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jun 10;7:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24976863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2011 Oct;165(3-4):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21647684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 May;135:109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23127844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Mar;179:467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25575206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Sep;167:530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25022728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2001 Sep;79(2):113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11480919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Oct;102(19):9083-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Jun 09;4(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 09;6(1):75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23657132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Apr;109(4):922-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22125119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12013-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25092344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2011 Nov-Dec;29(6):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 16;344(6185):1246843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24833396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1984 Jun;26(6):628-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18553382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jun;186:223-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25817033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2015 Apr;112(4):677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25323809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2013 Apr;110(4):1078-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23192283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1984 Jan;26(1):46-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Oct;108(10):2300-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21520024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Feb;26(2):169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18259168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jun 06;5(1):38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Apr;109(4):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Aug 20;8:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Jul;164:292-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24862006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Sep;144:429-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Jul;139:249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Aug 26;6(1):119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23971902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 May;327(5):455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Apr;96(6):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 May 13;7:71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24910713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Bhalla, Aditya" sort="Bhalla, Aditya" uniqKey="Bhalla A" first="Aditya" last="Bhalla">Aditya Bhalla</name>
</region>
<name sortKey="Bansal, Namita" sort="Bansal, Namita" uniqKey="Bansal N" first="Namita" last="Bansal">Namita Bansal</name>
<name sortKey="Fountain, Mackenzie" sort="Fountain, Mackenzie" uniqKey="Fountain M" first="Mackenzie" last="Fountain">Mackenzie Fountain</name>
<name sortKey="Hegg, Eric L" sort="Hegg, Eric L" uniqKey="Hegg E" first="Eric L" last="Hegg">Eric L. Hegg</name>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<name sortKey="Stoklosa, Ryan J" sort="Stoklosa, Ryan J" uniqKey="Stoklosa R" first="Ryan J" last="Stoklosa">Ryan J. Stoklosa</name>
</country>
<country name="Suède">
<region name="Michigan">
<name sortKey="Hodge, David B" sort="Hodge, David B" uniqKey="Hodge D" first="David B" last="Hodge">David B. Hodge</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001904 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001904 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26862348
   |texte=   Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26862348" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020